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The Task Matters

✤ ML is really good at the head

POS tagging

QA
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Upstream: Morphosyntactic Tagging
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Feature-based Classification

word=entendrez 
suffix3=rez 
word-1=n 
word+1=jamais 
cluster=124 
cluster-1=53 
cluster+1=210
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Universal Lexicons

✤ Seed with Universal Dependencies (Nivre et al. ’16)

John saw Mary 
VERB 

Tense=Past
   The saw broke 

NOUN 
Number=Sing

saw

NOUN:Number=Sing 
VERB:Tense=Past
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Part-Of-Speech Tagging: Queries
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Ganchev et al. (2012)
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POS Taggers From Clicks 
Ganchev et al. (2012)
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Morphosyntax Conclusions

✤ Money on more supervised data not necessarily optimal 

✤ Better alternative: lexical resources (auto, manual & both) 

✤ Better alternative: correlate usage statistics (click logs)
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More Data

EN
->
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1x 2x 10x

Syntax Reordering

Katz-Brown et al; Hall et al. 2011
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Machine Translation

✤ Human vs. auto data: about the same 

✤ Human models sometimes better than learned 

✤ Better parsing models = better translation 

✤ Better to spend on targeted resources — reordering

vs.



End User: Sentence Compression
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Sentence Compression @Google

Former Los Angeles Lakers head 
coach Phil Jackson won eleven 

NBA championships. He won six 
titles with the Chicago Bulls and 

five titles with the Lakers.
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Google News

Headline

First sentence

Filippova & Altun ’13
✤ Can extract millions of pairs
✤ Quality ~= expert annotations
✤ 81.4 -> 84.3 F1 (10% -> 100% data)
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Need For High Quality Annotations?

?
Filippova et al. ’15: 
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The Resource Trade-off

High quality 
annotations Crowd-sourced Auto resources

Data + modelData + model



End User: QA & Knowledge Extraction
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Weakly Sup. Knowledge Extraction 
(West et al. 2014)

R=parents

parent of __ 
__’s parent 
__ father 

mother of __ 
…

Extract relation 
templates/queries

search logs

QA system

Q=Frank Zappa

parent of Frank Zappa 
Frank Zappa’s parent 
Frank Zappa father 

mother of Frank Zappa 
…

Mothers of Inversion 
Ray Collins 

Rose Marie Colimore 
Francis Zappa 

Gail Zappa 
Rose Marie

Score entities in 
result snippets 
& aggregateIssue queries

QA system
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Top-level Conclusion

Syntax

Semantics



Thanks


